Assembly and mechanism of a group II ECF transporter

Nathan K. Karpowicha,b,1 and Da-Neng Wanga,b,1

*The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, and 1Department of Cell Biology, New York University School of Medicine, New York, NY 10016

Edited by H. Ronald Kaback, University of California, Los Angeles, CA, and approved December 17, 2012 (received for review October 5, 2012)

Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A′), a high-affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A′ and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A–A′ heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.

Vitamins are small organic molecules that function as essential enzymatic cofactors in all organisms. For example, riboflavin (Vitamin B2) is the precursor to the indispensible redox cofactors flavin mononucleotide and flavin adenine dinucleotide. Notably, the genomes of the human pathogens Listeria, Streptococcus, and Staphylococcus lack the enzymes for de novo riboflavin synthesis. Instead, these bacteria possess energy-coupling factor (ECF) transporters with the S subunit for riboflavin, RibU (1). Consequently, ECF-RibU-mediated uptake may be the sole source of riboflavin in these pathogenic bacteria (1).

Active membrane transporters share common mechanistic features: a binding site for the transport substrate; a means for coupling to cellular energy, such as transmembrane ion gradients or ATP; and a pathway for substrate translocation across the membrane. In ECF transporters, these roles are divided between three types of subunits: two homologous ATPase subunits (A and A′), a transmembrane coupling subunit (T), and a high-affinity substrate-binding subunit (S) (2). The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, which possess a symmetrical architecture of two ATPase domains (also called ABCs or nucleotide binding domains), two homologous transmembrane domains, and one bilobed substrate binding protein (Fig. S1). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between ECF and ABC transporters. In addition, the subunit stoichiometry of ECF transporters is controversial (3–6), and it is unclear whether the two transporter families share a common mechanism.

ECF transporters can be divided into two groups. Both groups use an energizing module composed of the A, A′, and T subunits, also known as the ECF. In group I transporters, the energizing module associates with a single dedicated type of S subunit, as typified by the ECF transporter for biotin from Rhodobacter capsulatus (2). In contrast, in group II transporters multiple S subunits for distinct substrates share a common energizing module (1) (Fig. S1). Therefore, group II ECF transporters essentially use the same transporter to import a variety of vitamin substrates. In both groups, ATP-driven conformational changes in the A–A′–T energizing module are presumably coupled to the release of the tightly bound substrate from the S subunits. A framework for understanding the transmembrane transport mechanism of ECF transporters requires elucidation of the subunit stoichiometry, the interactions between subunits, and the role of ATP binding and hydrolysis. To address these questions, we have characterized the group II ECF transporters from Thermotoga maritima and Streptococcus thermophilus.

Results

Assembly of the ECF Riboflavin Transporter from T. maritima. We first determined the composition of the group II ECF riboflavin transporter from T. maritima. Individually, neither the riboflavin-binding S subunit (RibU) nor the A–A′–T energizing module was able to transport riboflavin as judged by a complementation assay (Table S1). In contrast, coexpression of all four genes supported growth of an Escherichia coli riboflavin auxotroph, suggesting that the A, A′, T, and RibU subunits form a functional protein complex for riboflavin uptake. To investigate the assembly of the ECF riboflavin transporter, we conducted a series of pull-down experiments. First, His-tagged EcfA′ and untagged EcfA were coexpressed in E. coli, and a heteromeric A–A′ subcomplex was isolated by metal affinity chromatography. (Fig. 1A, lane 1). Similarly, the A, A′, and T subunits also copurified, indicating that the energizing module assembles into a stable core complex in the absence of an S subunit (Fig. 1A, lane 2). In contrast, no binary or tertiary subcomplexes containing the RibU S subunit were detected (Fig. 1A, lanes 3–5). Instead, coexpression of the three genes of the energizing module and RibU led to isolation of an intact complex between the four proteins (Fig. 1A, lane 6), indicating that assembly of the A–A′–T core is necessary for incorporation of the S subunit.

Subunit Stoichiometry of the ECF Riboflavin Transporter. The subunit stoichiometry of ECF transporters is controversial. Models with one A, A′, T, and S (1 × 4 subunit model, Fig. S1) have been proposed (1, 5–7), but more recent data suggest the presence of multiple T and S subunits in the functional transporter (3, 4). To investigate the relative subunit stoichiometry of the Thermotoga ECF riboflavin transporter, the four genes were coexpressed with distinct His- and FLAG-tagged copies of the same subunit. As...
metal affinity chromatography will pull down complexes with the His-tagged subunit, the presence of a second subunit copy could be detected by Western blotting for the FLAG-tagged version. Indeed, His-tagged A′ pulled down a FLAG-tagged copy of A (Fig. 1B, lane 1), which agrees with the EcfA–A′ heterodimer observed by both cross-linking and size exclusion chromatography (SEC) (Fig. S2). Therefore, we concluded that this method could be used to probe the relative contents of the T. maritima ECF transporter.

As our data suggest that the ECF transporter contains a dimer of the ATPase subunits, we next investigated whether more than one T subunit was present in the complex. Isolation of ECF riboflavin transporter complexes via His-tagged EcfT led to copurification of a second, FLAG-tagged T subunit (Fig. 1B, lane 3), suggesting that the transporter contains a homodimeric T subunit. Importantly, no anti-FLAG reactivity was observed in control experiments lacking a FLAG-tagged subunit (Fig. 1B, lanes 2 and 4). A two T model is also supported by cross-linking experiments on the biotin ECF transporter, which suggested a dimeric T subunit in this system (4). Sequences of T subunits lack internal repeats and are not homologous to the transmembrane domains of ABC transporters (8).

However, T subunits contain two conserved Ala–Arg motifs that are conserved in the transmembrane domains of ABC exporters (10). In such a 1A:1A heterodimer model, the energetic module resembles an ABC transporter with heterodimeric ATPases and homodimeric T subunits (Fig. S1). Alternatively, the Ala–Arg motifs could contact both ATPase subunits (7), as has been observed in the coupling interfaces of ABC exporters (10). In such a 1A:1A:2T model, the energetic module resembles an ABC transporter with heterodimeric ATPases and homodimeric T subunits (Fig. S1).

Using the same methodology, we showed that at least two copies of the RibU S subunit are present in the transporter (Fig. 1B, lane 5). As Thermotoga also contains an S subunit for riboflavin, BioY, we tested whether S subunits for two different substrates could assemble into the same complex simultaneously. Indeed, BioY copurified in a complex pulled down with RibU (Fig. 1B, lane 6), indicating the presence of two different S subunits in the same ECF transporter. Given that the group II S subunits are monomeric in isolation (6, 11, 12), these observations immediately suggest that the A–A′–T energizing module from Thermotoga contains two separate binding sites for S subunits. These data are consistent with the presence of a dual S subunit in the related Co²⁺ transporter (13) as well as studies of the ECF transporter for biotin from R. capsulatus (3). Therefore, we propose that there are two copies of the S subunit in the functional transporter complex. Furthermore, cross-linking of the purified homologous transporter from S. thermophilus is consistent with a transporter complex with 2T, 2S, and 2 ATPase subunits (discussed below). Taken together, our results (Fig. 1A and B) support a 1A:1A′:2T:2S (3 × 2) subunit model for the ECF transporter from Thermotoga. In this model, the intact ECF transporter is composed of an energizing module with two identical transmembrane coupling subunits (T subunits) and two homologous ATPase subunits (A and A′) with two substrate-binding proteins (S subunits) bound within the membrane (Fig. 1C). However, we acknowledge the need for further experimentation, particularly in the membrane environment, to conclusively determine the physiologically relevant subunit stoichiometry of ECF transporters.

Mechanistic Implications of the 1A:1A′:2T:2S (3 × 2) Model of ECF Transporters. The proposed 1A:1A′:2T:2S (3 × 2) architecture (Fig. 1C) predicts several features of the assembly and transport mechanism of ECF transporters that differ from a 1A:1A′:1T:1S (1 × 4) model (1, 5, 6) (Fig. S1). First, the 3 × 2 model does not strictly require an A–S or A′–S interaction, an essential feature of one version of the 1 × 4 model (6). The absence of an A–A′–RibU subcomplex (Fig. 1A) and the lack of a conserved cytoplasmic surface among the available S subunit structures (6, 7, 14) is consistent with this prediction (Fig. 1A). Second, a homodimeric T assembly suggests that each T subunit interacts with the A and A′ subunits via a homologous interface. The isolation of the A–A′–T core (Fig. 1A) and the presence of a second T subunit in the intact transporter (Fig. 1B) point to such a 1A:1A′:2T core assembly. Third, attachment of two S subunits to this energizing core yields the functional transporter. Consequently, the 3 × 2 assembly (Fig. 1C) displays twofold symmetry, which is also a critical aspect of ABC transporter function (15) (Fig. S1). Finally, our data on the Thermotoga ECF transporter indicate that S subunits for two different vitamins can simultaneously assemble into the same complex (Fig. 1B). This result raises the intriguing possibility that two substrate molecules could be taken up during one transport cycle.

Although these experiments shed light on the general assembly of the TmECF transporter, they also raised more specific questions, such as the molecular interactions that stabilize the A–A′ heterodimer, the structural basis for coupling between the ATPase and T subunits, and how ATP binding and hydrolysis drives membrane transport. To address these key mechanistic questions, we determined the first crystal structure of an EcfA–A′ heterodimer.

Structure of the EcfA–A′ Heterodimer from T. maritima. The EcfA and A′ subunits form a stable heterodimer in solution (Fig. S2) and directly interact with the T subunits (Fig. L4). To define the structural basis of these interactions, we determined the crystal structure of the adenosine diphosphate (ADP)-bound EcfA–A′ heterodimer from T. maritima to 2.7 Å resolution (Table 1). Each subunit of the heterodimer contains three subdomains (Fig. 2A): an ATP binding core (Core subdomain) that contains the phosphate binding P-loop and Walker B motifs, a third helix bundle (Helical subdomain, HD) that contains the critical LSQGQ...
signature motif, and a novel ~40 residue subdomain at the carboxy-terminus of each subunit that forms the subunit interface.

EcfA–A’ Dimerizes Via Novel Subdomains at the Carboxy-Termini. The carboxy-terminal subdomain (CTD) of the EcfA subunit (residues 221–266) consists of a three-helix bundle in which the first and third helices are perpendicular to the second (Fig. S3A). In the A’ subunit, this domain is formed by residues 213–259 and is composed of two short orthogonal helices linked by an extended structure (Fig. S3B). A search for similar protein structures (16) failed to reveal any structural homologs for either of the CTDs (Fig. S3C). At the A–A’ dimer interface, the CTDs interact primarily along helix-3 of the A subunit and helix-2 of A’ with a salt bridge between Asp257 and Lys232 and hydrophobic contacts between Leu260 and Leu233 (Fig. S3D). This interface buries ~1,700 Å² of solvent-accessible surface area and displays a surface complementarity (17) of 0.62. Notably, deletion of the EcfA CTD completely abolished the association of the heterodimer, indicating that the CTDs form the primary subunit interface in the absence of ATP (Fig. S3E). Although the CTDs are a general feature of the ATPase subunits from group II ECF transporters, many group I transporters lack these subdomains.

ADP-Bound Structure Represents the Open State of the ATPase. In ABC ATPases, ATP binding drives a transition from an open to a closed state in which two molecules of ATP are sandwiched between the P-loop of one subunit and the LSGGQ signature sequence of the other (18–21). In the ADP-bound EcfA–A’ structure, the distance between the P-loop and the LSGGQ motif is ~15 Å in each subunit (Fig. 2B), which agrees with the open state observed in several ABC importer structures (22–26). Indeed, the only inter-subunit contacts between the ATPase domains involve the P-loop of one monomer and the D-loop of the opposing subunit. Specifically, Asn37 of the EcfA’ P-loop forms a hydrogen-bond across the subunit interface with the D-loop Asp170 of EcfA (Fig. 2C), whereas the equivalent Thr42 of EcfA contacts Asp163 (Fig. 2D). As a result, the ADP-bound EcfA–A’ structure likely represents the physiologically relevant open state of the ATPase dimer. Notably, the homologous intersubunit contacts were observed in the nucleotide-free, inward facing structure of the *E. coli* maltose transporter in the pretranslocation state (22). In this system, ATP binding remodels this “loose” interface leading to closure of the ATPase dimer and conversion of the attached transmembrane domains to the outward-facing conformation (22, 27). Similarly, in ECF transporters, the ATP driven open to closed transition of the A and A’ subunits could push the cytoplasmic regions of the attached T subunits toward one another potentially leading to an outward-facing conformation of the transporter.

Interaction of EcfA–A’ with the EcfT Subunits. Each subunit of the EcfA–A’ heterodimer contains an acidic, highly conserved groove (Fig. S4A–C) that may interact with the conserved Ala–Arg motifs of the T subunits (4). This groove is formed by the first helix of the helical subdomain (HD) and a highly conserved helical turn that is unique to ECF–ATPases. The consensus sequence of this six-residue helix is xPD/ExQϕ (where ϕ is a hydrophobic residue) and we have termed this structure the “Q-helix” due to the invariant Gln residue (Fig. 3A). In each Q-helix, the backbone carbonyl oxygens of the first two residues form H-bonds with the backbone amides of the i-3 residues to form a short 3₁₁ helix. In the EcfA Q-helix, Tyr86 and Pro87 interact with Asp89 and Gln90 (Fig. 3B), whereas Asn80 and Pro81 of EcfA’ interact with Ser83 and Gln84 (Fig. 3C). As a result, these interactions place the conserved acidic residue on one side of the Q-helix and the invariant Gln on the opposing face (discussed below).

Table 1. Data collection and refinement statistics

<table>
<thead>
<tr>
<th>Data collection</th>
<th>P32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td></td>
</tr>
<tr>
<td>Cell dimensions (Å)</td>
<td>67.9, 67.9, 251.2</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>48.1–2.7 (2.77–2.70)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.092 (0.86)</td>
</tr>
<tr>
<td>Rstd</td>
<td>37.2 (3.3)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.9 (100.0)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>11.5 (11.5)</td>
</tr>
</tbody>
</table>

Refinement

- No. reflections: 35,599
- Rwork/Rfree: 0.212/0.256
- No. atoms:
 - Protein: 8101
 - Ligand: 112
 - Solvent: 107
- Average B-factor (Å²):
 - Protein: 60.6
 - Ligands: 47.1
 - Solvent: 42.2
- rmsd:
 - Bond lengths (Å): 0.007Å
 - Bond angles (°): 1.2

Values in parenthesis are for the highest resolution shell.

![Fig. 2.](https://www.pnas.org/cgi/doi/10.1073/pnas.1217361110)
As each Q-helix is located ~14 Å from the ATPase active site and the conserved Gln side chain points toward the interior of the groove (Fig. S4D), we hypothesize that this motif is involved in coupling to the T subunits. Superposition of the A subunit with the MalK ATPase from the maltose transporter structure (27) suggests this inference, as the Q-helix resides at the NBD-transmembrane domain interface in ABC transporters (Fig. 3D). Indeed, this groove is lined with conserved residues, including Arg77/71 of the core domain, Phe102/96 and Asn106/Ile100 of the helical subdomain, and Gln90/84 of the Q-helix (Figs. S4D and S5). Consistently, the homologous region of the BioM ECF ATPase could be cross-linked to the Ala–Arg motif of the BioN T subunit (Fig. S4E) (4). As a result, these data indicate that the conserved groove formed by the Q-helix represents the coupling interface between the ATPase and T subunits in ECF transporters.

Intrasubunit Coupling Between the Q-Helix and the LSGGQ Signature Sequence. The Q-helix of ECF transporters is in a prime position to couple conformational changes in the T subunits to the ATPase active site. In each subunit of the A–A’ heterodimer, the conserved acidic residue of the Q-helix is poised to interact with the amino acid following the LSGGQ motif in the same subunit. In a previously determined structure of the monomeric, nucleotide-free EcfA subunit from Thermotoga (28), Glu88 of the Q-helix forms an intrasubunit salt bridge with Arg145 (Fig. 3E), which is two residues after the LSGGQ and is completely conserved in ECF A subunits (Fig. S5). Similarly, Ser82 of the EcfA Q-helix, which is more conserved than Glu88, is completely conserved in ECF A subunits (28). Upon expression in E. coli, the StuECF–RibU complex catalyzed the uptake of radioactive riboflavin (Fig. 4D). As the Q-helix resides outside of the ATPase active site, mutations of the conserved Gln would be expected to have limited impact on the ATPase activity. Wild-type StuECF–RibU displayed a robust ATPase turnover rate at 37°C. Mutation of each Q-helix Glu to Ala (Glu164 and Glu168) had a minimal effect on the ATPase turnover (<20%), indicating that this residue does not play a direct role in ATP hydrolysis (Fig. 4B). In contrast, mutation of the Walker B catalytic Glu to Gln in both of the A’ (Glu157’) and A” (Glu157”) subunits reduced the rate by ~11-fold (Fig. 4B). As expected, both types of mutations greatly reduced riboflavin uptake by the transporter (Fig. 4C). Given the sequence conservation and position of this motif, these functional data indicate that the Q-helix plays an essential role in coupling to the T subunits in ECF transporters.

Discussion

3 × 2 Model for ECF Transporters. Herein we present data that the functional assembly of the group II ECF transporters from T. maritima and S. thermophilus consist of two substrate-binding S subunits, two identical T subunits, and two homologous ATPase subunits. In this 3 × 2 model for ECF transporters (Fig. 1C), each T

Fig. 3. The ECF-specific Q-helix forms the T subunit interface. (A) Sequence alignment of the Q-helix region in ABC and ECF-type ATPases. (B and C) The Q-helix (pink sticks) in the EcfA and EcfA’ subunits, respectively. The H-bonds that form the helix are shown as dashed lines, and the invariant Pro is labeled. (D) Superposition of the EcfA structure onto the maltose transporter (with the MalK ATPase omitted and the MalG transmembrane domain colored gray) reveals that the conserved groove formed by the Q-helix coincides with the coupling interface in ABC transporters. (E) In the T. maritima EcfA monomer structure (2YZ2), Glu88 of the Q-helix forms a salt bridge with the highly conserved Arg145 that follows the LSGGQ signature sequence. (F) The homologous residues in the EcfA’ structure are Ser82 of the Q-helix and Gln138 of the helical subdomain. In most EcfA subunits, the equivalent of Ser82 is an Asp residue. (G) In the EcfA crystal structure, the Glu88–Arg145 salt bridge is broken.
The Q-helix is essential for transmembrane transport. (A) 3H-riboflavin uptake of energized E. coli cells expressing the vector (●) or the ECF riboflavin transporter from S. thermophilus, StuECF-RibU (▲). 3H-riboflavin uptake of de-energized E. coli cells expressing StuECF-RibU is represented by ■ (B) ATPase activity of the wild-type, Walker B mutants, and Q-helix mutants of purified StuECF–RibU in detergent. (C) 3H-riboflavin uptake of energized E. coli cells expressing the wild-type and mutant transporters.

Proposed Transport Mechanism of ECF Transporters. The structural, functional, and assembly data presented herein suggest a potential model for the transport mechanism of ECF transporters (Fig. 5). Substrate binding to the S subunits results in a structural transition from an open apo to a closed, substrate-bound, occluded conformation (6, 7, 14). This arrangement uses the modularity of this transporter family (1) whereby two different S subunits can assemble into the same transporter complex (Fig. 1B). Moreover, by positioning the S subunits at the T subunit interface via the surface formed by transmembrane helices 1–2–3 (7, 14), ATP-driven, symmetrical conformational changes in the T subunits could be coupled to displacement of the substrate from the binding site (7).

Materials and Methods

Protein Expression and Purification of TmECF–RibU Complexes. The EcfA and A′ genes were cloned into pACYC-Duet (EMD4Biosciences) for co-expression. TmRibU was cloned into a modified pET15 vector (EMD4Biosciences) fused to an Nt decahistidine tag. For coexpression of the TmRibU and EcfT subunits, these genes were linked by a ribosome binding site with the following sequence: 5′ATAATTTTGGTTTAACAAAGGAGATATACC3′. The ECF FLAG-tagged subunits (EcfA, EcfT, RibU, and BioY) were cloned into pCDF-Duet (EMD4Biosciences). Protein expression was performed in E. coli BL21(DE3) at 37 °C in LB media. Cells were re-suspended in Buffer A (50 mM Tris, pH 7.5, 500 mM NaCl, 20% (vol/vol) glycerol, and 10 mM imidazole). After cell disruption, unlysed cells were removed by centrifugation and the supernatant was treated with 1% (wt/vol) dodecyl-maltoside (DDM) for membrane protein solubilization. Protein complexes were purified on Talon resin (Clontech) in 0.05% DDM and eluted with 300 mM imidazole. Copurification was analyzed by SDS/PAGE of elution fractions and Western blotting for the FLAG tag with the mouse anti-FLAG M2 antibody (Sigma-Aldrich).

Expression and Purification of the EcfA–A′ Heterodimer from T. maritima. The gene for the EcfA′ subunit (TM1663) was amplified from T. maritima genomic DNA and cloned into a modified pET28 vector (EMD4Biosciences) with an amino-terminal decahistidine tag linked by a thrombin recognition site. The

Materials and Methods

Protein Expression and Purification of TmECF–RibU Complexes. The EcfA and A′ genes were cloned into pACYC-Duet (EMD4Biosciences) for co-expression. TmRibU was cloned into a modified pET15 vector (EMD4Biosciences) fused to an Nt decahistidine tag. For coexpression of the TmRibU and EcfT subunits, these genes were linked by a ribosome binding site with the following sequence: 5′ATAATTTTGGTTTAACAAAGGAGATATACC3′. The ECF FLAG-tagged subunits (EcfA, EcfT, RibU, and BioY) were cloned into pCDF-Duet (EMD4Biosciences). Protein expression was performed in E. coli BL21(DE3) at 37 °C in LB media. Cells were re-suspended in Buffer A (50 mM Tris, pH 7.5, 500 mM NaCl, 20% (vol/vol) glycerol, and 10 mM imidazole). After cell disruption, unlysed cells were removed by centrifugation and the supernatant was treated with 1% (wt/vol) dodecyl-maltoside (DDM) for membrane protein solubilization. Protein complexes were purified on Talon resin (Clontech) in 0.05% DDM and eluted with 300 mM imidazole. Copurification was analyzed by SDS/PAGE of elution fractions and Western blotting for the FLAG tag with the mouse anti-FLAG M2 antibody (Sigma-Aldrich).

Expression and Purification of the EcfA–A′ Heterodimer from T. maritima. The gene for the EcfA′ subunit (TM1663) was amplified from T. maritima genomic DNA and cloned into a modified pET28 vector (EMD4Biosciences) with an amino-terminal decahistidine tag linked by a thrombin recognition site. The
gene for EcfA subunit (T7M0222) was amplified from genomic DNA and cloned into MCS1 of PACYC-Duet. These constructs were cotransformed into E. coli BL21(DE3), and protein expression was performed in LB media at 37 °C. Cells were resuspended in Buffer A. After cell disruption, lysed cells and the membrane fraction were removed by centrifugation and the supernatant was bound to Talon resin. After washing, the A and A’ heterodimer was eluted with a buffer containing 85 and 120 mM imidazole. The Talon fractions were diluted into 50 mM Tris, pH 8.5, and 2 mM EDTA; loaded onto an O-Q sepharose column; and eluted with a linear gradient from 5 to 500 mM NaCl. Peak fractions were pooled and treated with thrombin to remove the purification tag from the A’ subunit. After thrombin digestion, the sample was further purified by gel filtration on a Superdex 200 column equilibrated in 20 mM Tris, pH 7.5, 100 mM NaCl, and 1 mM EDTA. The best crystals required the mutation of two non-conserved surface patches with high side chain entropy (29) in the A’ trimer to Ala: Glu53, Glu55, Glu125, Lys126, and Glu127. For crystallization, SEC peak fractions were pooled, concentrated to ~7 mg/mL, and incubated with 10 mM ADP before setup.

Crystallization and Structure Determination of EcfA–A’. Crystals of ADP-bound EcfA–A’ were grown by vapor diffusion from drops consisting of 1.2 µL protein and 0.6 µL 100 mM NaOAc, pH 5.5, 27.5% 2-methylpentane-2,4-di(OL), and 200 mM NaCl at 4 °C. Crystals were flash frozen in liquid nitrogen before data collection in oscillation mode at beamline X29 of the National Synchrotron Light Source (NSLS). Diffraction data were processed with HKL2000 (30). The EcfA–A’ crystal structure was determined by molecular replacement in Phaser (31) with PDB entry 2YV2 (28) as the search model. Structures were built with Coot (32) and refined with Phenix (33). Electrostatic surface potential was calculated with Adaptive Poisson-Boltzman Solver (APBS) (34). The final model contains residues 1–265 of the A subunit and 1–247 of A’.

Supporting Information

SI Materials and Methods

Identification of the ECF Transporter Subunits of Thermotoga maritima. The subunits of the ECF transporter from *T. maritima* were identified by sequence similarity searches in BLAST (1) using the homologous proteins from *Lactococcus lactis* as seeds: EcfA (LlmG_0288, GI: 152031905), EcfA′ (LlmG_0287, GI: 52031898), EcfT (LlmG_0289, GI: 334305761), and RibU (LlmG_1195, GI: 313471444) (2). These searches unambiguously identified TM0222, TM1663, TM1868, and TM1455 as the EcfA, A′, T, and RibU homologs, respectively.

Complementation of an Escherichia coli Riboflavin Auxotroph. The *E. coli* riboflavin auxotrophic strain BSV11 (3) was obtained from the *E. coli* genetic stock center at Yale University. This strain contains a mutation in the ribB gene, which encodes an essential enzyme in the riboflavin biosynthesis pathway. BSV11 was lysogenized with the λDE3 kit (EMD Biosciences) to enable co-expression of TmECF genes from pET vectors. Otherwise, the assays were performed as described in ref. 4.

Expression and Purification of the ECF Riboflavin Transporter from Streptococcus thermophilus. The following ECF and RibU genes from *S. thermophilus* were identified by sequence homology to their *T. maritima* counterparts as Stu2007 (T), Stu2008 (A), Stu2009 (A′), and Stu0268 (RibU). A polycistronic operon was constructed by linking the genes with ribosome binding sites between them in the following order: T–RibU–A–A′ and cloned into modified pBAD vector with a carboxyl-terminal myc-deca-histidine tag linked by a thrombin recognition site. This construct was transformed into *E. coli* BL21(DE3), and protein expression was performed in LB media at 37 °C. Cells were resuspended in Buffer A. After cell disruption, unlysed cells were removed by centrifugation and the membrane fraction was isolated by ultracentrifugation. Membranes were resuspended in Buffer A and treated with 1% DDM for membrane protein solubilization. The StuECF–RibU complex was bound to Talon resin in DDM and exchanged into SEC buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 10% glycerol, and 0.04% DDM) by thrombin cleavage from washed beads. The complex was further purified by gel filtration on a Superdex 200 column in SEC buffer. Peak fractions were pooled and concentrated to 1 mg/mL for ATPase assays and cross-linking experiments.

Fig. S1. Domain architecture of ECF transporters (Left) and ABC importers (Right). Both transporter families are powered by a pair of conserved ATPase domains, called A and A′ in ECF transporters and nucleotide binding domains (NBDs) or ABCs in ABC transporters. Group II ECF transporters use a transmembrane coupling protein (T) and multiple integral membrane substrate binding proteins (S). ABC importers possess a symmetrical architecture of two NBDs, two homologous transmembrane domains (TMDs), and a bilobed soluble substrate binding protein (SBP). The 1 × 4 subunit model for ECF transporters, in which the transporter is composed of one A, A′, T, and S (above) does not share this twofold symmetry.
Fig. S2. The Ecfa and A′ subunits heterodimerize in solution. (A) Glutaraldehyde (GA) cross-linking of the purified A and A′ complex at three protein concentrations leads to a dominant band at 60 kDa in all cases. (B) The oligomeric state of the complex was determined by comparison with the protein standards carbonic anhydrase (CA) and BSA (BSA) by SEC. The Ecfa–A′ complex elutes at a position consistent with a 60 kDa heterodimer.

Fig. S3. The Ecfa–A′ heterodimer associates via novel CTDs. (A) Structure of the Ecfa CTD. (B) Structure of the Ecfa′ CTD. (C) Superposition of the CTDs reveals a shared structure between the two helices of A′ and helices 2 and 3 of the A subunit but with an inverted orientation. (D) The CTDs interact primarily along helix-3 of the A subunit and helix-2 of A′. (E) Truncation of Ecfa at Gly220 (A ΔCTD) removes the CTD and abolishes the copurification of the A–A′ heterodimer.
Fig. S4. Surface properties of the T-interaction site formed by the Q-helices in the EcfA–A’ heterodimer. (A) T-subunit facing surface of the A–A’ heterodimer colored by subdomain as in Fig. 3. The groove formed by the Q-helix and the helical subdomain in each subunit is indicated by the green arrows. (B) Sequence conservation of the same surface, where purple represents highly conserved and teal residues are variable. (C) Electrostatic surface potential reveals that the groove is negatively charged. (D) The groove is lined with conserved residues from the core subdomain (Arg77/71’), the first helix of the helical subdomain (Phe/96’ and Asn106/Ile100’), and the Q-helix (Gln90/84’). (E) Residues that could be cross-linked to the T subunit of the ECF biotin transporter are mapped onto the surface of the EcfA–A’ structure and colored red.
Fig. S5. Sequence conservation of ATPase subunits from ECF transporters. Sequence alignment of EcFA and A′ subunits from *S. thermophilus*, *L. lactis*, *Listeria monocytogenes*, *Bacillus subtilis*, *Staphylococcus aureus*, *Clostridium perfringens*, *Enterococcus faecalis*, *T. maritima*, and the BioM ATPase from the biotin ECF transporter from *Rhodobacter capsulatus*. Functionally important motifs are labeled and the residue that interacts with the Q-helix is marked with a red star.
Fig. S6. Dynamic interactions between the Q-helix and the LSGGQ signature sequence. (A) Core domain superposition of EcfA subunits form the monomer (pink) and heterodimer structure (green). Loss of the salt bridge between Glu88 and Arg145 releases the helical domain, which assumes a conformation consistent with the ATP-bound state. (B) The core domain superposition of the MalK ATPase from the pretranslocation (pink) and ATP-bound (green) structures of the maltose transporter reveal a similar domain rotation. (C) Schematic illustrating how modulation of the interaction between the Q-helix and residues following the LSGGQ could play a role in coupling to the substrate-bound state of an ECF transporter.

Fig. S7. Characterization of the ECF riboflavin transporter from *S. thermophilus*, StuECF–RibU. (A) SEC profile and SDS/PAGE (Inset) of purified StuECF–RibU. (B) Glutaraldehyde (GA) cross-linking of StuECF–RibU in detergent yields a dominant band at 160 kDa, consistent with a 3×2 subunit stoichiometry.
Table S1. Complementation of an *E. coli* riboflavin auxotroph by TmECF–RibU

<table>
<thead>
<tr>
<th>Genes</th>
<th>Riboflavin (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Vector</td>
<td>−</td>
</tr>
<tr>
<td>RibB</td>
<td>++</td>
</tr>
<tr>
<td>RibU (S)</td>
<td>−</td>
</tr>
<tr>
<td>T</td>
<td>−</td>
</tr>
<tr>
<td>A+A’</td>
<td>−</td>
</tr>
<tr>
<td>2 Vectors</td>
<td>−</td>
</tr>
<tr>
<td>RibU+A+A’</td>
<td>−</td>
</tr>
<tr>
<td>RibU+T</td>
<td>−</td>
</tr>
<tr>
<td>T+A+A’</td>
<td>−</td>
</tr>
<tr>
<td>RibU+T+A+A’</td>
<td>+</td>
</tr>
</tbody>
</table>

LB plates supplemented with the indicated amounts of riboflavin were scored as: −, no growth; +, slight growth 20–40 colonies; ++, strong growth 50–100 colonies.